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Trig derivatives - sin and cos
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Reasons:

1. We have to prove at least one trig derivative from scratch. Usually, this is sin x.

Remember the definition: The value of the derivative of fat a is:
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When f(x) =sinxweseth = x —aandx = a + h. This sets us up for the trig
identity for sin of an angle sum. At the end of these notes there is an outline of the
proof for the derivative of sin x. At the heart of the proof is a classic limit:
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This limit is a fact about Euclidean geometry with many consequences, not least the
derivative of sin x. We must use radians to make this limit true.
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2. Derivative of cos x.

We can write the identity:
cos?x +sin?x = 1
as
(cos x)? = 1 — (sinx)2.

Then apply the chain rule:
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We already know that
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So we have
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Summary

dcosx

dsinx .
= cosx and —, = —sinx

1. Derivatives:

2. In calculus, always work in radians.
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Outline of the Proof that ™
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We have already
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We also need
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To see this:
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Then use sin(a + h) = sina cos h + cos a sin h to get
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Now we let h = 0 and the derivative of sin x at a is cos a.



